Open Source Embedded Software

Mingjie Shen, Akul Pillai, Brian A. Yuan, James C. Davis, Aravind Machiry

EMBOSS DATASET GOLLECTION

C)

GitHub

Filters i

-

-

Keyword: "embedded" &&

fork=false &&
archived=false &&
language=C,C++ &&
sort=stars

Top 250 repos l

Manual filter:]

[remove non-embedded repos

HQI PREVALENGE OF SAST TOOLS

238 reposl

osrtos.

com

On GitH
> 100

(S

Filters

ub &&
stars

J

32 repos

\4

Embedded Software Dataset
(258 distinct repos)

Most (97%) of the EMBOSS repositories do not use
SAST tools.

* Many EMBOSS repositories rely on compiler warnings
instead of dedicated SAST tools.

* Most developers are aware of Cl Workflows and use
them to run their SAST tools.

Yes

Use SAST
Tools?

)(Why?

29% (4/14)

71% (10/14)

Low security impact]75% (3/4)

Lack of resources J25°/o (1/4)

80% (8/10)

Workflows }{:

)J[Where?
40% (4/10)
Out-of-band
i .) 50% (2/4)
100% (2/2) No time. _
L Why notin | A . ——
(Workflows? | o L:(Stl)ve ZJ
50% (1/2) | Wasn't aware. re b

“

s

-

clang static-analyzer

~

12.5% (1/8)

7

-Wall, -Wextra

100% (8/8)

B £

clang-tidy

25% (1/4)

-Wall, -Wextra

™\

100% (4/4)

J

splint

] 25% (1/4)

Fig: Summary of our developer survey on the use of SAST tools.

RQ3: EFFECTIVENESS OF SAST TOOLS ON EMBOSS

e Strict compiler warnings are less effective than

 Getting CodeQL running takes minimal
engineering effort, 45-60 min per project.

* CodeQL discovers many security and non-security

defects

¥ File Edit Selection

cpp-filtered.sarif C apds9960.c

Lz04
1265
1266
1267
1268

1269
1270

1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290

9+ @

SNSOrs C apds _'!_' ::: -
Shernr(ERRUR rdlilieu L wrrLe FUDZIJ00U_ _UGLUNFLU4 ! \II

return ret;

}

/* Enable the Gesture mode (Proximity mode is needed for gesture

mode) */

ret = apds9960 i2c write8(priv, APDS9960 ENABLE, PON | PEN | GEN |

WEN) ;
if (ret < 9)
{

View Go Run Terminal Help <

£ Untitled (Workspace)

g>v & [0 - 1330 SARIF Results

snerr("ERROR: Failed to initialize the APDS9960!\n");

return ret;

}

/* Register the character driver */

ret = register_driver(devpath, &g_apds996e_fops, 0666, priv);

if (ret < 9)
{

snerr("ERROR: Failed to register driver: %d\n", ret);
kmm_free(priv);

/* Attach to the interrupt */

priv->config->irq_attach(priv->config, apds9966_int_handler, priv);

return ret;

1291 }

1292

}

1293 #endif /* CONFIG_I2C && CONFIG_SENSORS_APDS9960 */

1294

CodeQL.

An Empirical Study on the Use of Static Analysis Tools in

developers’ requirements.

> SSH: dellmicro

% of security defects

0 9603288c* < ®8A2®1 W0 @Sarif -- NORMAL --

100%

30%

60%

40%

20%

0%

0.2

0.4

0.6 0.8

criticality score

We investigate the use of Static Application Security Testing (SAST) tools in Open-Source Embedded Software (EMBOSS)
projects used in safety-critical systems. We found the lack of SAST tool usage, with only 3% of projects employing them, citing
ineffectiveness and false positives as reasons. We applied SAST tools and found GitHub's CodeQL to be the most effective,
uncovering 540 defects, with 74% likely being security vulnerabilities. We recommend EMBOSS engineers adopt modern SAST
tools for enhanced security.

 The false positive rate (23%) of CodeQL meets

DOm0 - x
. 100%
147) RULES 19 1 Filter results Y g B
w
S G . o 080%
> cpp/uncontrolled-arithmetic e
> EEz;s:sp;nli:;jsl-npc;ntir(:;suczrling :lg 607
> cpp/implicit-function-declaration W 0
> cpp/toctou-race-condition 2 o
> cpp/nested-loops-with-same-variable
> cpp/suspicious-pointer-scaling-void 2 Q-‘
e CEEjuseF—)after—frze : 2 E 40%
1288 apds9960.c Memory may have been pre \yf ed k c-l—l
s N - —o— All defects
ff/ff,afff.ff:iri'fifnm 5\ 20%
o : —m— Security defects
Memory mey have been previoudy feed by cl t fee 0%
cpp/usefafterffree 1 0 3 0
cpp/ -after-free
' e o s ey B # defects in a repo
. Fig: CDFs of # of total and security-
o e relevant defects in a repository.
Ln 1293, Col 50 Spaces:2 UTF-8 LF {} C Linux [
cpp/inconsistent-null-check 122 (36.2%
PP
cpp/uncontrolled-allocation-size 42 (12.5%)
cpp/wrong-type-format-argument 38 (11.3%)
cpp/unbounded-write 36 (10.7%)
cpp/missing-check-scant 24 (7.1%)
cpp/oftset-use-before-range-check 20 (5.9%)
cpp/incorrect-allocation-error-handling 15 (4.5%)
cpp/overtflowing-snprintf 12 (3.5%)
cpp/constant-comparison 12 (3.5%)
cpp/overrunning-write 8 (2.4%)
cpp/toctou-race-condition 8 (2.4%)
0 50 100 150

Fig: CDF of the severity of security defects.

security-relevant defects

Table: Results of SAST tools on EMBOSS repositories.

Fig: Top 10 CodeQL queries by # of security-relevant defects found.

Action Result format #Success # Failure Reasons for failure Total Median Precision
Repo Repo # warn # warn
david-a-wheeler/flawfinder SARIF 176 82 Invalid SARIF, Python Error 4,637 12 20% (64/316)
cpp-linter/cpp-linter-action =~ GCC error msg 230 28 Timeout, Python Error 212,228 111 0% (0/213)
deep5050/cppcheck-action GCC error msg 256 2 Timeout 31,873 19 58% (116/200)
CodeQL Autobuild SARIF 74 184 Autobuild failure 471 0 96% (154/160)

Number of defects

150

100

50

0

PURDUEL

[] Security [] Non-security 47
15
21 119
10 .
31 =
45 50 5
1 I3 40 T ot
3] 5 12] = —+ L8
HAL(4) DD(2) NET(18) DAL(3) PAR(3) LS(11) UIL(7) APP(10) OS(15) MML(1) GPL(5) OT(4)

Fig: Number of defects of each type in EMBOSS of various
categories. Category (#repo containing defects)

Table: Summary of CodeQL results and their analysis.

Number of ... Value
Setup

Repos in dataset 258

Repos built 154

Repos analyzed 143
CobpEQL Results

Errors reported 578

Warnings reported 2,294
Manual Analysis

Detfects discovered 540

Repos where defects were discovered 83 (60%)

Security defects discovered 399

Repos where security defects were discovered 71 (51%)

Responsible Disclosure

Defects confirmed 273

Security defects confirmed 219

Pull requests raised 139

Pull requests merged 81

CVEs issued 2

RO2: GHALLENGES IN EFFEGTIVELY

USING SAST TOOLS

 Warnings produced in a non-standard text format
* CodeQL autobuild fails to handle the diverse build

infrastructure of the majority repositories

* Preliminary evaluation shows that CodeQL has the
highest precision on EMBOSS repositories.

	幻灯片 1: An Empirical Study on the Use of Static Analysis Tools in Open Source Embedded Software

